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ABSTRACT  
We investigated the relationship between ventilation rates and individual work performance in a 
call center, and controlled for other factors of the indoor environment. We randomized the 
position of the outdoor air control dampers, and measured ventilation rate, differential (indoor 
minus outdoor) carbon dioxide (∆CO2) concentration, supply air velocity, temperature, humidity, 
occupant density, degree of under-staffing, shift length, time of day, and time required to 
complete two different work performance tasks (talking with clients and post-talk wrap-up to 
process information). ∆CO2 concentrations ranged from 13 to 611 ppm. We used multi-variable 
regression to model the association between the predictors and the responses. We found that 
agents performed talk tasks fastest when the ventilation rate was highest, but that the relationship 
between talk performance and ventilation was not strong or monotonic. We did not find a 
statistically significant association between wrap-up performance and ventilation rate. Agents 
were slower at the wrap-up task when the temperature was high (>25.4 °C). Agents were slower 
at wrap-up during long shifts and when the call center was under-staffed. 
 
INDEX TERMS 
Ventilation rates, Productivity, Offices, Worker performance, Carbon dioxide 
 
INTRODUCTION 
Among building designers, operators, and code authorities, there is a growing interest in the 
impact of indoor air quality on human performance in commercial buildings. Knowledge about 
how indoor air quality affects work performance could be used to “optimize” the design and 
operation of commercial buildings. It could also be used to specify minimum ventilation rates in 
building codes and standards. 
 
There is a large body of research results on the effects of the indoor environment on sick 
building syndrome (SBS) symptoms. The amount of ventilation air in particular has received 
considerable attention because low levels of ventilation have been suspected of causing a variety 
of health problems. Prior research suggests that performance (e.g., speed or accuracy) of 
cognitive work can be affected by indoor thermal conditions (Wyon 1993, 1996a, 1996b, 
Seppanen et al 2003).  In previous studies, increased ventilation rates and reduced indoor carbon 
dioxide concentrations have been associated with improvements in health at work (Seppanen et 
al., 1999). Field intervention studies have been used by Jaakkola et al. (1990), Jaakkola et al. 
(1991), Wyon (1992), and Menzies et al., (1993) to test for a relationship between ventilation 
rate and the frequency and intensity of sick building syndrome symptoms. Jaakkola et al. (1991) 
showed an increase in SBS symptoms when the amount of outdoor air was reduced. Seppanen et 
al. (1999) found nearly consistent decreases in SBS symptoms when ventilation was increased 
within the 0 to 10 liters per second per person range.  In addition, some studies reviewed found 
that increasing ventilation rates above 10 liters per second per person was associated with 
decreases in SBS symptoms.   
 
Until recently it has been very difficult to measure real-world work performance in a way that is 
compatible with a scientific study. Most work performance is “measured” with annual 
performance reviews. These reviews are highly subjective, and do not occur frequently enough 
for use in an intervention study. As a result, many studies of the impact of indoor air quality on 
work performance have used performance on tests or tasks designed by the researchers to 



submitted to special issue of Indoor Air  LBNL-55032 

emulate or measure real work performance, but that are not part of any real job function. For 
example, Nunes et al. (1993) administered acomputerized neurobehavioral tests of sustained 
visual attention and a sick building symptoms (SBS) survey in a field study. Those workers who 
reported building-related health symptoms had a 7% slower response (p < 0.001) and had 30% 
higher error rates in a symbol-digit substitution test of speed and coding ability. In a study of 35 
Norwegian classrooms, higher concentrations of CO2, which indicate lower rates of outside air 
ventilation per person, were associated with poorer performance (p < 0.01) in computerized tests 
of reaction time (Myhrvold et al., 1996); however, the percentage change in performance was not 
specified. Wargocki et al. (2000) report the results of an experiment in a laboratory designed to 
emulate office work. The laboratory looked like an office, and subjects performed tasks designed 
to emulate office work. They found that work performance was worsened by the presence of old 
carpet taken from a complaint building, which when present was behind a partition so that 
subjects were not aware that it was there. Bakó-Biró et al. (2002) describe the results of a very 
similar laboratory experiment designed to simulate the effect of IAQ on office work. Female 
subjects were exposed to two conditions, one with new personal computers (PCs), the other 
without PCs. The results showed that the new computers were a significant perceived pollution 
load and that the performance on tasks designed to simulate office work was worse when the 
computers were present. 
 
There are fewer studies that report the relationship between indoor environmental factors and 
real work performance. Kroner et al. (1992) used the time taken to resolve an insurance claim as 
the dependent variable in a study of the productivity effects of moving to a new building, and 
later, of disabling some of the advanced technology used by office workers to control their own 
environment in the new building. Niemelä et al. (2002) performed a cross-sectional study in a 
call center with a small group of subjects which showed that temperatures above 25 oC were 
associated with operator performance reduction of 5-7%. Milton et al. (2000) showed an 
association between reduced increased air ventilation rates and reduced absenteeism with a study 
of 40 buildings. In a follow-up study involving an intervention measure that altered the 
ventilation rate in two buildings, Myatt et al. (2002) were not able to establish the same 
association. The differential carbon dioxide concentrations observed by Myatt et al. (2002) were 
much lower that the upper limit recommended by codes and standards. Wargocki et al. (2003) 
performed a field intervention in a call center in which the ventilation rate was changed between 
two levels (2.5 l/s/person vs 25 l/s/person), and filter cleanliness was changed (new filter vs used 
filter). The results showed that call center agents worked faster at increased ventilation rates 
when a new particle filter was utilized, but with an old filter present increased ventilation was 
associated with slower work performance. Tham et al. (2003) performed a field intervention in a 
call center in which the ventilation rate was changed between two levels (4.5 l/s/person vs 12 
l/s/person) and indoor temperature was changed between two levels (22.5 oC vs 24.5 oC). The 
results showed that decreased temperature was associated with increased work speed when the 
ventilation rate was low and increased ventilation rate was associated with increased work speed 
when the temperature was high. At low temperature, the association between ventilation rate and 
performance was not statistically significant. Likewise, at high ventilation, the association 
between temperature and performance was not statistically significant. 
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This paper describes a study of the relationships between real world work performance in a call 
center and indoor environmental factors. Preliminary findings from this study were presented by 
Federspiel et al. (2002) and Fisk et al. (2002).  
 
BUILDING DESCRIPTION AND PERFORMANCE METRICS 
The study building is a call-center operated by a health maintenance organization located in 
northern California.  The building, constructed in 1998, has two floors, a total floor area of 4,600 
m2 (50,000 ft2), sealed windows, carpeted floors, concrete ceilings, and walls of glass and 
concrete.  Workstations are predominately located within cubicles that house one to four 
workers.  Each call center worker has a computer and telephone with a headset.  The appearance 
of the workspace is pleasant and the maximum worker density in the building of 6.3 persons per 
100 m2 (1076 ft2) is typical of offices 
 
The call center was heated, cooled, and ventilated by four variable air volume (VAV) air 
handling units (AHUs) that modulated the flow of cool or warm air to maintain indoor air 
temperatures in the desired range. One of these AHUs did not serve spaces served by agents 
while they handled calls, so data from that unit were not included in the individual performance 
analysis. Each AHU had an air-side economizer control system that modulated the flow rate of 
outside air, above a minimum rate established by the building code, with the goal of minimizing 
costs for cooling; however, to prevent unplanned changes in outside air supply the economizer 
controls were deactivated during most experimental periods.   
 
Two kinds of agents work in the call center, registered nurses (RNs) who provide medical advice 
and tele-service representatives (TSRs) who screen calls and schedule appointments. In this 
paper we only consider performance data related to the RNs. We did not analyze the performance 
data from TSRs because the TSRs spent much less time on the wrap-up task than RNs. In many 
cases the wrap-up times for TRSs were zero. The maximum number of RNs and TSRs in the 
building during this study was 119 and 173, respectively. 
 
Agents perform two discrete tasks for each call that they handle. The first is talking to the client 
on the telephone. This task is referred to as the talk task. The second task is called the wrap-up 
task. This task involves data entry after the agent has finished the talk task. Agents are free to 
work at their own pace during the wrap-up task. When wrap-up is complete the agent signals the 
automated call distribution (ACD) system that she is ready to accept another call. We expected 
environmental stressors to have a bigger impact on the wrap-up task than on the talk task because 
agents are free to work at their own pace during wrap up; they are not constrained by their 
interaction with a client.  
 
We analyzed performance data from two kinds of reports: 1) those with the average talk time and 
average wrap-up time of each agent averaged over a work shift, and 2) the those with the average 
handle time (talk time plus wrap-up time) averaged for all agents on call in 30-minute, non-
overlapping intervals. The individual performance reports allowed us to control for variations in 
average individual performance and to control for and model spatial variations in exposure, but 
did not give good time resolution. The group performance reports provided good time resolution, 
but no spatial resolution and no ability to control for average individual performance variation. 
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Agents sign in to the ACD system with a unique identification number. Individual performance 
data were averaged over the length of the shift that each agent worked each day. Agents sign out 
of the ACD system when they finish a shift. We used reports with sign-in and sign-out times for 
each agent each day to determine the length of each agent’s shift. Work shifts varied from 0.5 to 
15 hours. 
 
The ACD system records a metric called NETS. NETS is the number of agents scheduled to be 
on call minus the number needed to keep the client waiting time in the queue equal to a target 
value. When NETS is negative the call center is under-staffed. 
 
The agents worked in organizational units called neighborhoods. We used the locations of the 
neighborhoods to associate sensor data such as temperature, humidity, outdoor airflow rate, and 
∆CO2 concentration with individual agents. Some measurements such as outdoor airflow rate 
were made at each AHU. We determined which neighborhoods were served by which AHU in 
order to associate sensor data from the AHUs with individual agents. 
 
METHODS 
The intervention method used in this study involved changing the position of the dampers that 
regulate the amount of outside air entering each AHU. We did not alter any other settings of the 
controls, nor did we change any of the equipment such as filters. Air filters were changed by the 
maintenance staff during July 2000. The interventions started on July 28, 2000 and lasted until 
October 24, 2000. The agents did not know we were changing the outside airflow rates.  
 
We changed the outside air damper positions automatically with equipment that we added to 
each AHU. We attempted to have randomized daily changes during the middle of the study with 
weekly settings at the beginning and end of the study. However, the equipment failed during a 
few periods. Table 1 shows the damper settings that were actually achieved. The damper settings 
corresponded approximately to four ventilation rates: code-minimum ventilation, 2X code, 4X 
code, and 8X code. We did not use these settings as predictor categories explicitly. Instead we 
measured ventilation rate at each AHU using the CO2 mass balance method described by Drees 
et al. (1992).  
 
Table 1: Ventilation control schedule.  L, M, and H refer to fixed damper positions for low, 
medium, and high ventilation rates.  E refers to control of ventilation rates by the 
economizer. 
 

Week Day 1 2 3 4 5 6 7 8 9 10 11 12 13 
F L H E H L E M M H M E E E 
Sa L H L E H M M M M L E E E 
Su L H H L M L M M E M E E E 
M L H E H L M M M M H E E L 
Tu L H M E H L M L H E H H E 
W L H H L E H M M L E H E  -- 
Th L H M H M E M L E E H E  -- 
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We used the difference between the CO2 concentration in the return air and the outside air as a 
ventilation metric, which we refer to as ∆CO2. The values of ∆CO2 are an imperfect surrogate for 
outside air supply rates per person. ∆CO2 is also a measure of the degree of control of occupant-
generated air pollutants via outside air ventilation. 
 
Supply airflow rates were monitored using one to three pitot tubes in each supply duct. The 
locations of the pitot tubes were determined based on measurements from eight points in the 
cross-section of each duct. Data from the pitot tubes were recorded once per minute. Air 
temperature and humidity were measured approximately one meter above floor level throughout 
the spaces occupied by the study population.  Temperatures were logged every one minute at 25 
indoor locations and relative humidities were logged every five or 15 minutes at 11 indoor 
locations.   
 
The call center operates 24 hours per day, 7 days per week. We discarded data when few workers 
were present, only including data from shifts that started after 6am and ended before 10pm 
(individual performance analysis) of from 7:30am to 6pm (group performance analysis), Monday 
through Friday. Prior to 6am and after 10pm there were no TSRs on call, so RNs performed dual 
functions. Data from a holiday (Labor Day) were excluded. Data from the first two weeks and 
from one week in the middle of the study were excluded because of changes made to the ACD 
system software. For the individual analysis, we removed data from agents who worked less than 
20 shifts during the study period. We removed data where either the predictors or the 
performance metrics were clearly outside a reasonable range (e.g., calls lasting hours or negative 
values of ∆CO2). We eliminated performance data from agents who were managers of a group. 
The software that runs the ACD system was upgraded 9 days before the start of the study and on 
the 58th day of the study (a Friday evening). We observed a transient in the daily-average wrap-
up times during the first two weeks of the study, so we discarded the first day (a Friday) and the 
following two weeks of data. We found that the transient in the daily-average wrap-up times was 
shorter after the second software upgrade, so we only discarded one week of data after that 
event. We included an indicator variable to account for the performance difference after the 
second software upgrade. We included indicator variables for time of week. Each of these 
indicators spanned a two-hour time period, so there were a total of 40.  
 
We used multi-variable regression to estimate the relationship between environmental factors 
and ventilation. For the group performance data we constructed a time series model to account 
for time correlation. We used the observed serial correlation (or, rather, the observed lagged 
covariance) to estimate the variance-covariance matrix of the residuals, assuming the covariance 
to be identically zero for time lags exceeding six hours.  Following a standard approach for 
regression in which the residuals have an off-diagonal variance-covariance matrix (e.g. see Box 
et al. (1994), p.363 or Gelman et al. (1995), p. 257), we then performed a linear regression that 
used the same explanatory variables but adjusted for the temporal correlation of the residuals. 
We did not attempt to include time correlation in the individual performance analysis because 
the shifts lengths were comparable to the length of the observed time correlation in the group 
analysis.  
 
All results in this paper are for models predicting the logarithm of the talk time or handle time as 
a linear function of predictors. The nonlinear transformation (logarithm) makes the model 
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multiplicative. The response variable (talk time or wrap-up time) is the product of the 
exponentials of the predictors. The logic behind a multiplicative model is that stressors should 
have a proportional impact on the response because it is a time variable. A stressor that causes a 
one minute call to become a two minute call should make a five minute call become a ten minute 
call, not a six minute call. An additive model would make sense if a stressor normally caused an 
interruption just once per call. We tried additive models (no logarithmic transformation) and 
found that the statistical performance was about the same as the multiplicative model. We report 
the results of the multiplicative models because we believe they are a better representation of 
how the predictors influence the responses. 
 
We had no direct measurements of noise, call content, caller cooperation, worker motivation, or 
other factors that are expected to directly influence agent performance, but we did have 
explanatory variables that serve as proxies for these parameters:  

1. Noise and level of activity are related to the number of agents working at a given time, so 
we included the number of agents on call as one of our explanatory variables.  

2. Callers’ cooperation, workers’ motivation and call content were all expected to be related 
to queue length, so we included NETS as a predictor variable .  

3. Call content was expected to vary by time of week, so we included time-of-week 
indicator variables in the regression.  

4. Indoor air pollutant levels were not directly measured with useful frequency, but indoor 
and outdoor carbon dioxide were measured periodically. CO2 concentration never 
reached levels at which it would directly affect performance. However, the difference 
between the indoor and outdoor concentration (∆CO2) is a proxy for occupant-generated 
pollution. The difference between indoor and outdoor CO2 concentrations, ∆CO2, should 
be correlated with the indoor concentration of any pollutant emitted indoors at a rate that 
is approximately proportional to the number of people in the building.  Examples of such 
pollutants are body odors, perfumes, dust stirred up by activity, and emissions from 
equipment used by occupants such as computers and copy machines.  

 
Since all individual performance data were averaged over a work shift lasting hours, we used the 
average of the dependent variables over the interval of each shift as predictor variables. We did 
not try to account for variability of the environmental factors during each shift as potential 
dependent variables in our models. 
 
For the individual performance analysis, we tried models with linear and categorical terms for 
∆CO2, a linear ∆CO2 term multiplied by shift length, linear, inverse linear, and categorical terms 
for ventilation rate, ventilation rate multiplied by shift length, quadratic and categorical terms for 
temperature, quadratic terms for enthalpy, a linear term for occupant density, quadratic and 
categorical terms for NETS, and linear and categorical terms for shift length. The following 
results are for a model with a categorical term for either ∆CO2 or ventilation rate, a categorical 
temperature term, a linear occupant density term, a categorical NETS term, and a categorical 
shift length term. 
 
RESULTS 
 
Individual Performance 
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Descriptive statistics for the explanatory variables are shown in Table 2. The ventilation rate 
distribution has three modes that correspond to low, medium, and high damper settings. The 
temperature distribution has a long high-temperature tail. The relative humidity has a long low-
humidity tail. The number of occupants includes TSRs because occupant density is a proxy for 
auditory and visual distractions. The distribution of shift length has four modes corresponding to 
4, 5, 6, and 8 hour shifts. Below the 4-hour mode there is a long tail of short shifts. 
 

Table 2: Descriptive statistics of explanatory variables. 

 ∆CO2 Vent Temp RH Occ. NETS Shift 
min 13 ppm 0.26 l/s-m2 21.0 C 20.2 % 66.6 -11 0.48 hrs 
med 243 1.38 23.0 42.5 156.3 1.8 6.4 
mean 253 2.07 23.1 42.4 159.6 2.7 6.8 
max 611 10.0 26.6 55.3 253.6 17.2 12.4 

 
Figures 1 and 2 show histograms of ∆CO2 and ventilation rate, respectively. The boundaries for 
the categories used in the regression analysis were placed at the low points in these histograms.  
 
 

Figure 1: Histogram of differential CO2 
 

Figure 2: Histogram of ventilation flow. 
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Figures 3 and 4 show the predicted association between talk time and the ∆CO2 and ventilation 
categories. In both cases, the highest ventilation rate (lowest ∆CO2) is the baseline. Vertical bars 
in these and all successive figures are standard errors. Boundaries for the ∆CO2 categories are at 
125, 250, and 325 ppm. The p-values for the category coefficients are shown on the figures. The 
boundaries for the ventilation categories are 0.91, 2.03, and 3.66 l/s-m2.  

Figure 3: ∆CO2 category coefficients for talk model. 

Figure 4: Ventilation category coefficients for talk model. 

 
The talk time models predict that agents performed the talk task 3.9% and 4.3% slower (∆CO2 
and ventilation, respectively) after the software upgrade (p=0).  
 
The models of wrap-up time did not show a statistically significant association between wrap-up 
time and ∆CO2 or ventilation rate. Figures 5 and 6 show the predicted association between wrap 
up time and ∆CO2 and ventilation rate. When we replaced the categorical ∆CO2 terms with a 
linear term, the model predicted wrap-up times would be 4.4% slower at ∆CO2 = 600 ppm than 
at ∆CO2 = 100 ppm (p=0.125). When we replaced the categorical ventilation rate term with a 
linear term, the model predicted that wrap-up times would be 3% longer at 0.5 l/s-m2 than at 5 
l/s-m2 (p=0.095).  
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Figure 5: ∆CO2 category coefficients for wrap-up model. 

 

Figure 6: Ventilation category coefficients for wrap-up model. 

 
The wrap-up time models showed an association between wrap-up time and temperature, NETS, 
and shift length. Figure 7 shows the temperature distribution to which the agents were exposed. 
Figure 8 shows the coefficients of the temperature categories for the wrap-up model containing 
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Figure 7: Temperature distribution. 
 

Figure 8: Temperature coefficients for wrap-up model with ∆CO2. 
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Figure 9: Temperature time series showing high exposures. 

 
Figure 10 shows the coefficients of the NETS categories for the ∆CO2 wrap-up model. The 
baseline is NETS=0, meaning no under-staffing or over-staffing. There is a clear trend showing 
that agents perform wrap-up fastest when NETS is positive (call center overstaffed). When the 
categorical terms were replaced with a linear term, the model predicted that wrap-up would 
decrease by 7.4% when NETS was increased from –7 to 13 (p=0.014). 
 
Figure 11 shows the coefficients of the shift length categories for the ∆CO2 wrap-up model. 
There is an increasing trend. When the categorical terms were replaced with a linear term the 
model predicted that wrap-up would be 10.7% slower during ten-hour shifts than during two-
hour shifts (p=0.069). 

Figure 10: NETS coefficients for wrap-up model with ∆CO2. 
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Figure 11: Shift length coefficients for wrap-up model with ∆CO2. 

 
The wrap-up model with ∆CO2 categories predicts that wrap-up was 29.6% longer at maximum 
occupancy than when the call center was nearly empty but the term was not statistically 
significant (p=0.13). The same model predicted that wrap-up was 7.8% shorter after the software 
upgrade (p=0). 
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abandoned calls in the previous period will call back.  Although we also examined non-linear 
relationships between lagged “nets” and log(AHT), these models provided no advantage over 
linear models for this variable.  In the models discussed below, we assumed log(AHT) to vary 
linearly with lagged “nets.”  
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We now discuss three specific models for log(AHT) in some detail.  Each of these models 
includes: the time-of-week indicator variables; temperature – 23 oC and (temperature – 23 oC)^2; 
number of agents on duty; five piecewise-linear “normalized nets” categories; and lagged “nets”, 
allowing linear variation of log(AHT) with the “nets” value of one half hour previous.  The three 
models differ only in their handling of ∆CO2.  Model A includes no ∆CO2 variable.  Model B 
includes three ∆CO2 categorical variables, indicating whether ∆CO2 for each half hour was: 0-
150 ppm, 150-300 ppm, or over 300 ppm.  In Model C, the two lower ∆CO2 categories within 
Model B have been split, thus, Model C has five ∆CO2 categorical variables: 0-75 ppm, 75-150 
ppm, 150-225 ppm, 225-300 ppm, or over 300 ppm.  Table 2 identifies the variables used in each 
model and provides some of the regression coefficients and associated uncertainties.  
 
 
Table 2: Regression coefficient estimates and standard errors for three statistical models of 
log(AHT) on the listed set of explanatory variables.  Coefficient estimates for the 105 time-
of-week effects, five “nets” categories, and five “nets” slopes are not shown, but are similar 
for all three models. 
 
Coefficient estimate  [units] Model A Model B Model C 
<Time of week> 
[log(AHT)] 

Included in 
model 

Included in model Included in model 

< five “nets” categories> 
[log(AHT)] 

Included in 
model 

Included in model Included in model 

< five “nets”slopes> 
[log(AHT) / nets] 

Included in 
model 

Included in model Included in model 

Lagged “nets” 
[log(AHT) / nets] 

0.048 +/- 0.015 0.053 +/- 0.015 0.054 +/- 0.015 

(temp – 23 oC) 
[log(AHT) / degree C] 

-0.24 +/- 0.45 -0.23 +/- 0.44 -0.13 +/- 0.43 

(temp – 23 oC)^2 
[log(AHT) / (degree C)^2] 

0.007 +/- 0.027 0.006 +/- 0.03 0.004 +/- 0.029 

Relative Humidity 
[log(AHT) /  % ] 

0.11 +/- 0.22 0.11+/- 0.22 0.06 +/- 0.22 

Agents on duty 
[log(AHT) / agent] 

0.0016 +/- 0.0004 0.0017 +/- 0.0004 0.0017 +/- 0.0004 

 0 < ∆CO2 < 75 
[log(AHT)] 

Not in model 0.00 +/- 0.00 0.00 +/- 0.00 

75 < ∆CO2 < 150 
[log(AHT)] 

Not in model Not in model 0.036 +/- 0.010 

150 < ∆CO2 < 225 
[log(AHT)] 

Not in model -0.002 +/- 0.004 0.031 +/- 0.010 

225 < ∆CO2 < 300 
[log(AHT)] 

Not in model Not in model 0.027 +/- 0.010 

300 < ∆CO2 
[log(AHT)] 

Not in model -0.009 +/- 0.006 0.022 +/- 0.010 

[log(AHT)]Residual standard 
error 

0.0446 0.0445 0.0442 
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Figure 12 shows the residuals from Model A (which did not include ∆CO2), plotted versus 
∆CO2.  A lowess local regression fit is shown as a solid line (we used a smoother span of 1/5, 
and 3 iterations).  Only for low ∆CO2 values is there any evidence that the residuals might vary 
with ∆CO2; the model tends to predict longer handle times than were actually observed for very 
low ∆CO2 concentrations.  The right-hand portion of Fig. 3 shows a histogram of the residuals, 
with a normal distribution (mean 0, standard deviation 0.0448) superimposed.  The distribution 
of residuals is very close to normal, as we assume when we perform least-squares regressions.  
 

Figure 12: Residuals from regression model A, which does not include a carbon dioxide 
variable, versus indoor minus outdoor carbon dioxide concentration. 
 
Figure 13 shows the estimated model coefficients associated with each ∆CO2 bin, for Models B 
(lower plot) and C (upper plot).  For each bin, the horizontal bar shows the range of ∆CO2 
spanned by the bin, and the vertical error bar covers plus or minus one standard error.  In each 
case, the lowest bin is defined to have no effect, a coefficient of 0.00.  
 
Figure 13: Model coefficients for bins of ∆CO2 concentration, indicating the effect of ∆CO2 
on log(AHT) with the lowest DCO2 bin used as the reference.  The lower and upper plots 
are results of Model B and Model C, respectively.  Horizontal bars indicate ∆CO2 bin 
boundaries and vertical error bars represent ± standard deviation. 
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In the model with only three ∆CO2 bins (Model B) there is no evidence that lower ∆CO2 is 
associated with lower (faster) AHT---indeed, the relationship points the other direction: the 
estimate for the high-∆CO2 bin is about 1% faster than that for the lowest bin (an effect of -0.009 
on log(AHT) corresponds to a factor of exp(-0.009)=0.991 on AHT, which is very close to a 1% 
speed-up).  However, this estimate is not very precise, with an uncertainty (one standard error) of 
approximately ± 0.6 percentage points.  
 
In contrast, the results from Model C suggest that very low ∆CO2 concentrations are associated 
with lower AHT (faster work) than are higher concentrations.  All of the estimated coefficients 
for ∆CO2 concentrations over 75 ppm are around 0.025 to 0.035, corresponding to handle times 
that are 2.5% to 3.5% slower than at the lowest ∆CO2.  Moreover, these effects are all highly 
statistically significant (p < 0.05 for all bin coefficients).  However, as we discuss below, we 
think the statistical uncertainties are understated and that the relationship between AHT and 
∆CO2 is far from conclusive.   
 
Overall, neither the Model B nor Model C results show evidence that AHT increases with ∆CO2 
over most of its range.  A dependence of log(AHT) on ∆CO2 is apparent only for ∆CO2 
concentrations below about 150 ppm: log(AHT) is somewhat lower for ∆CO2 concentrations in 
the 0-75 ppm range than in the 75-150 ppm range, after adjusting for all of the other explanatory 
variables.  When the 0-150 ppm ∆CO2 category is split into two categories, as in Model C, the 0-
75 ∆CO2 category has the lowest (fastest) values of log(AHT), after adjusting for the other 
explanatory variables.  But when the ∆CO2 data from 0-150 ppm are combined into a single bin, 
as in Model B, the overall average AHT in this bin is about the same as in the other bins.  
 
In another model, we treated ∆CO2 as a continuous variable throughout the entire concentration 
range and found no statistically significant or strong relationship between ∆CO2 and AHT.  
These findings were essentially unchanged, when data collected after day 57 were excluded from 
the analyses in order to eliminate any possible effects of the change in software on day 58.  
 
The analyses based on ∆CO2, which is a proxy for ventilation per person, assume that effects on 
AHT would be caused by pollutants with indoor concentrations approximately proportional to 
the number of people.  However, the building itself can also be a source of pollutants, 
independent of the number of people in it: walls or carpeting may emit volatile organic 
compounds, for example.  If the building is the source of pollutants that affect performance, then 
it is total ventilation rate, not ventilation per person, should predict variation in AHT.  We 
investigated this possibility by fitting Models like A-C, but using ventilation rate categories 
rather than ∆CO2 categories.  There is no evidence for a dependency of AHT on ventilation rate; 
in fact, even for the highest values of ventilation rate there is no evidence for reduced handle 
time compared to lower ventilation rate values.  To the extent that there is an apparent 
ventilation-related effect in this study, it is due to ventilation rate per person (as indicated by 
∆CO2) rather than ventilation per unit indoor air volume.  
 
 
DISCUSSION 
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We expected, but did not find, a dose-response relationship between ventilation and work 
performance. Instead the individual performance analysis showed that performance at low and 
high ventilation rates was statistically the same, that performance at intermediate ventilation 
rates was worse by about 2%, at that the increased talk time (decreased work speed) was 
statistically significant. We tried a number of different models, including models containing the 
air quality proxies multiplied by shift length (time of exposure). The pattern described above 
showed up in most of these models. Qualitatively, the group performance analysis showed a 
similar relationship, with the predicted performance worst at intermediate ventilation rates. 
These findings are similar to the findings of Jaakola and Miettinen (1995). In that study, the risk 
of SBS symptoms increased at ventilation rates above 25 l/s/person in comparison to 15-25 
l/s/person. An increased risk was observed for all symptoms, and was statistically significant for 
eye symptoms, mucosal irritation, and allergic reaction. 
 
We found that what evidence there was of an association between ventilation and performance 
showed up in the talk task and not in the wrap-up task. We expected that productivity loss would 
be more likely during wrap-up because agents are free to work at their own pace; they are not 
constrained by their interaction with a client. It is possible that our non-intuitive findings are the 
result of an unidentified confounding factor. 
 
There is recent evidence that pollutants trapped in filters may play a role in the relationship 
between work performance in call centers and indoor air quality (Wargocki et al., 2003). Alm et 
al. (2000) showed that the pollutant concentration released from a dirty filter increased with the 
velocity of air passing through the filter. We found that the average velocity of air passing 
through the filters increased as the ventilation rate increased. The average filter face velocities 
corresponding to the ventilation categories (from lowest to highest) were 1.77, 1.99, 1.86, and 
2.00 m/s. The face velocities for the ∆CO2 categories (from lowest to highest ∆CO2) were 2.04, 
1.97, 1.86, and 1.73 m/s. The variable supply flow rates in our study may have played a role in 
the findings regarding ventilation since the filters may have been emitting more pollutants at the 
higher face velocities, which corresponded to higher ventilation rates.  
 
We found that agents were 16% slower at wrap-up when the temperature was greater than 25.4 
°C. This was the largest effect with a p-value less than 5%. Temperatures greater than 25.4 °C 
occurred on only seven days, six of them in a nine-day period starting at day 21. All of them 
occurred in the same neighborhood. Observation of the temperature time series in that 
neighborhood indicates that the daytime workers and the nighttime workers were fighting over 
the temperature setpoint. The nighttime workers wanted the temperature higher than the daytime 
workers. This neighborhood is located in a southern extension of the call center with three 
exposed walls surrounding it, so low radiant temperatures may have contributed to the need for a 
higher air temperature. Sometimes the nighttime workers would raise the setpoint very high and 
the daytime workers would not lower it for two or three days. This caused the high-temperature 
exposure that was correlated with slower task performance. Some models we tried showed a 
similar increase in wrap-up times at low temperatures, but the low-temperature terms were never 
statistically significant.  
 
When the call center was understaffed agents performed wrap-up slower. This relationship was 
strong in both the individual performance analysis and the group performance analysis. The call 
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center director predicted this effect prior to our analysis. The hypothesis is that when the call 
center is understaffed agents never get to rest between calls. They make up for the missing rest 
by working slower during wrap-up. This finding is contrary to the finding of Wargocki et al. 
(2003), who found that call center operators worked faster when the call center volume increased 
while the number of agents remained fixed. 
 
CONCLUSION AND IMPLICATIONS 

1. There is some evidence that ventilation rates less than 100% outdoor air were associated 
with lower work performance, but the results are not conclusive. 

2. Agents worked slower at high temperature (> 25.4 C). 
3. Agents worked slower when the call center is understaffed. 
4. There is some evidence that agents worked slower when they work longer shifts. 
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